M. Ångqvist, D. O. Lindroth, and P. Erhart
Optimization of the Thermoelectric Power Factor:
Coupling between Chemical Order and Transport Properties
Chem. Mater. 28, 6877 (2016)
M. Ångqvist, W. A. Muñoz, J. M. Rahm, E. Fransson, C. Durniak, P. Rozyczko, T. H. Rod, and P. Erhart
ICET – A Python Library for Constructing and Sampling Alloy Cluster Expansions
Adv. Theory. Sim. 2, 1900015 (2019)
E. J. Candès and M. B. Wakin
An Introduction To Compressive Sampling
Signal Processing Magazine, IEEE 25, 201 (2008)
T. Goldstein and S. Osher
The Split Bregman Method for L1-Regularized Problems
SIAM Journal of Imaging Science 2, 323 (2009)
G. L. W. Hart and R. W. Forcade
Algorithm for generating derivative structures
Physical Review B 77, 224115 (2008)
G. L. W. Hart and R. W. Forcade
Generating derivative structures from multilattices: Algorithm and application to hcp alloys
Physical Review B 80, 014120 (2009)
D. P. Landau, S.-H. Tsai, and M. Exler
A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling
Am. J. Phys. 72, 1294 (2004)
L. J. Nelson, G. L. W. Hart, F. Zhou, and V. Ozoliņš
Compressive sensing as a new paradigm for model building
Phys. Rev. B 87, 035125 (2013)
L. J. Nelson, V. Ozoliņš, C. S. Reese, F. Zhou, and G. L. W. Hart
Cluster expansion made easy with Bayesian compressive sensing
Phys. Rev. B 88, 155105 (2013)
B. Sadigh, and P. Erhart
Calculation of excess free energies of precipitates via direct thermodynamic integration across phase boundaries
Phys. Rev. B 86, 134204 (2012)
J. M. Sanchez, F. Ducastelle, and D. Gratias
Generalized cluster description of multicomponent systems
Physica A 42, 334 (1984)
J. M. Sanchez
Cluster expansion and the configurational theory of alloys
Phys. Rev. B 81, 224202 (2010)
A. van de Walle
Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit
Calphad 33, 266 (2009)
A. van de Walle, P. Tiwary, M. de Jong, D.L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, and Z.-K. Liu
Efficient stochastic generation of special quasirandom structures
Calphad 42, 13 (2013)
F. Wang and D. P. Landau
Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States
Phys. Rev. Lett. 86, 2050 (2001)
F. Wang and D. P. Landau
Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
Phys. Rev. E 64, 056101 (2001)
A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard.
Special quasirandom structures
Phys. Rev. Lett. 65, 353 (1990)

Also see [I], [II], [III], and [IV].