from mchammer.free_energy_tools \
import (_lambda_function_forward, _lambda_function_backward)
from ase import Atoms
from ase.units import kB
from typing import List
from .thermodynamic_base_ensemble import ThermodynamicBaseEnsemble
from ..calculators.base_calculator import BaseCalculator
from .. import DataContainer
from icet.input_output.logging_tools import logger
logger = logger.getChild('thermodynamic_integration_ensemble')
[docs]
class ThermodynamicIntegrationEnsemble(ThermodynamicBaseEnsemble):
r"""Instances of this class allow one to find the free energy of the
system. To this end, we use the :class:`canonncal ensemble
<mchammer.ensembles.CanonicalEnsemble>` with a modified
Hamiltonian,
.. math::
H(\lambda) = (1 - \lambda) H_{A} + \lambda H_{B}
The Hamiltonian is then sampled continuously from :math:`\lambda=0`
to :math:`\lambda=1`. :math:`H_{B}` is your cluster expansion
and :math:`H_{A}=0`, is a completely disordered system, with free
energy given by the ideal mixing entropy.
The free energy, A, of system B is then given by:
.. math::
A_{B} = A_{A} + \int_{0}^{1} \left\langle\frac{\mathrm{d}H(\lambda)}
{\mathrm{d}\lambda}\right\rangle_{H} \mathrm{d}\lambda
and since :math:`A_{A}` is known it is easy to compute :math:`A_{B}`
:math:`\lambda` is parametrized as,
.. math::
\lambda(x) = x^5(70x^4 - 315x^3 + 540x^2 - 420x + 126)
where :math:`x = \mathrm{step} / (\mathrm{n\_steps} - 1)`.
Parameters
----------
structure
Atomic configuration to be used in the Monte Carlo simulation;
also defines the initial occupation vector.
calculator
Calculator to be used for calculating the potential changes
that enter the evaluation of the Metropolis criterion.
temperature
Temperature :math:`T` in appropriate units, commonly Kelvin.
n_lambdas
Number of :math:`\lambda` values to be sampled between 0 and 1.
forward
If this is set to ``True`` the simulation runs from :math:`H_A` to :math:`H_B`,
otherwise it runs from :math:`H_B` to :math:`H_A`.
:math:`H_B` is the cluster expansion and :math:`H_A = 0`, is the fully disordered system.
boltzmann_constant
Boltzmann constant :math:`k_B` in appropriate
units, i.e., units that are consistent
with the underlying cluster expansion
and the temperature units. Default: eV/K.
user_tag
Human-readable tag for ensemble. Default: ``None``.
random_seed
Seed for the random number generator used in the Monte Carlo simulation.
dc_filename
Name of file the data container associated with the ensemble
will be written to. If the file exists it will be read, the
data container will be appended, and the file will be
updated/overwritten.
data_container_write_period
Period in units of seconds at which the data container is
written to file. Writing periodically to file provides both
a way to examine the progress of the simulation and to back up
the data. Default: 600 s.
ensemble_data_write_interval
Interval at which data is written to the data container. This
includes for example the current value of the calculator
(i.e., usually the energy) as well as ensembles specific fields
such as temperature or the number of atoms of different species.
Default: Number of sites in the :attr:`structure`.
trajectory_write_interval
Interval at which the current occupation vector of the atomic
configuration is written to the data container.
Default: Number of sites in the :attr:`structure`.
sublattice_probabilities
Probability for picking a sublattice when doing a random swap.
This should be as long as the number of sublattices and should
sum up to 1.
Example
-------
The following snippet illustrate how to carry out a simple thermodynamic
integration. Here, the parameters of the cluster expansion are set to
emulate a simple Ising model in order to obtain an
example that can be run without modification. In practice, one should of
course use a proper cluster expansion::
>>> from ase.build import bulk
>>> from icet import ClusterExpansion, ClusterSpace
>>> from mchammer.calculators import ClusterExpansionCalculator
>>> # prepare cluster expansion
>>> # the setup emulates a second nearest-neighbor (NN) Ising model
>>> # (zerolet and singlet ECIs are zero; only first and second neighbor
>>> # pairs are included)
>>> prim = bulk('Au')
>>> cs = ClusterSpace(prim, cutoffs=[4.3], chemical_symbols=['Ag', 'Au'])
>>> ce = ClusterExpansion(cs, [0, 0, 0.1, -0.02])
>>> # prepare initial configuration
>>> structure = prim.repeat(3)
>>> for k in range(5):
>>> structure[k].symbol = 'Ag'
>>> # set up and run MC simulation
>>> calc = ClusterExpansionCalculator(structure, ce)
>>> mc = ThermodynamicIntegrationEnsemble(structure=structure, calculator=calc,
... temperature=600,
... n_steps=100000,
... forward=True,
... dc_filename='myrun_thermodynamic_integration.dc')
>>> mc.run()
"""
def __init__(self,
structure: Atoms,
calculator: BaseCalculator,
temperature: float,
n_steps: int,
forward: bool,
user_tag: str = None,
boltzmann_constant: float = kB,
random_seed: int = None,
dc_filename: str = None,
data_container: str = None,
data_container_write_period: float = 600,
ensemble_data_write_interval: int = None,
trajectory_write_interval: int = None,
sublattice_probabilities: List[float] = None,
) -> None:
self._ensemble_parameters = dict(temperature=temperature,
n_steps=n_steps)
self._last_state = dict()
super().__init__(
structure=structure,
calculator=calculator,
user_tag=user_tag,
random_seed=random_seed,
data_container=data_container,
dc_filename=dc_filename,
data_container_class=DataContainer,
data_container_write_period=data_container_write_period,
ensemble_data_write_interval=ensemble_data_write_interval,
trajectory_write_interval=trajectory_write_interval,
boltzmann_constant=boltzmann_constant)
if sublattice_probabilities is None:
self._swap_sublattice_probabilities = \
self._get_swap_sublattice_probabilities()
else:
self._swap_sublattice_probabilities = sublattice_probabilities
sublattices = []
for sl in self.sublattices:
sublattices.append(sl.atomic_numbers)
# add species count to ensemble parameters
symbols = set([symbol for sub in calculator.sublattices
for symbol in sub.chemical_symbols])
for symbol in symbols:
key = 'n_atoms_{}'.format(symbol)
count = structure.get_chemical_symbols().count(symbol)
self._ensemble_parameters[key] = count
self._n_steps = n_steps
if forward:
self._lambda_function = _lambda_function_forward
self._lambda = 0
else:
self._lambda_function = _lambda_function_backward
self._lambda = 1
@property
def temperature(self) -> float:
""" Current temperature. """
return self._ensemble_parameters['temperature']
@property
def n_steps(self) -> int:
return self._n_steps
def _do_trial_step(self):
""" Carries out one Monte Carlo trial step. """
self._lambda = self._lambda_function(self.n_steps, self.step)
sublattice_index = self.get_random_sublattice_index(self._swap_sublattice_probabilities)
swap = self.do_thermodynamic_swap(sublattice_index=sublattice_index,
lambda_val=self._lambda)
return swap
[docs]
def run(self):
""" Runs the thermodynamic integration. """
if self.step >= self.n_steps:
logger.warning('The simulation is already done')
else:
super().run(self.n_steps - self.step)
def _get_ensemble_data(self):
data = super()._get_ensemble_data()
data['lambda'] = self._lambda
return data