Coverage for mchammer/ensembles/canonical_ensemble.py: 93%

24 statements  

« prev     ^ index     » next       coverage.py v7.5.0, created at 2024-12-26 04:12 +0000

1"""Definition of the canonical ensemble class.""" 

2 

3from ase import Atoms 

4from ase.units import kB 

5from typing import List 

6 

7from .. import DataContainer 

8from ..calculators.base_calculator import BaseCalculator 

9from .thermodynamic_base_ensemble import ThermodynamicBaseEnsemble 

10 

11 

12class CanonicalEnsemble(ThermodynamicBaseEnsemble): 

13 r"""Instances of this class allow one to simulate systems in the 

14 canonical ensemble (:math:`N_iVT`), i.e. at constant temperature 

15 (:math:`T`), number of atoms of each species (:math:`N_i`), and 

16 volume (:math:`V`). 

17 

18 The probability for a particular state in the canonical ensemble is 

19 proportional to the well-known Boltzmann factor, 

20 

21 .. math:: 

22 

23 \rho_{\text{C}} \propto \exp [ - E / k_B T ]. 

24 

25 Since the concentrations or equivalently the number of atoms of each 

26 species is held fixed in the canonical ensemble, a trial step must 

27 conserve the concentrations. This is accomplished by randomly picking two 

28 unlike atoms and swapping their identities. The swap is accepted with 

29 probability 

30 

31 .. math:: 

32 

33 P = \min \{ 1, \, \exp [ - \Delta E / k_B T ] \}, 

34 

35 where :math:`\Delta E` is the change in potential energy caused by the 

36 swap. 

37 

38 The canonical ensemble provides an ideal framework for studying the 

39 properties of a system at a specific concentration. Properties such as 

40 potential energy or phenomena such as chemical ordering at a specific 

41 temperature can conveniently be studied by simulating at that temperature. 

42 The canonical ensemble is also a convenient tool for "optimizing" a 

43 system, i.e., finding its lowest energy chemical ordering. In practice, 

44 this is usually achieved by simulated annealing, i.e., the system is 

45 equilibrated at a high temperature, after which the temperature is 

46 continuously lowered until the acceptance probability is almost zero. In a 

47 well-behaved system, the chemical ordering at that point corresponds to a 

48 low-energy structure, possibly the global minimum at that particular 

49 concentration. 

50 

51 Parameters 

52 ---------- 

53 structure 

54 Stomic configuration to be used in the Monte Carlo simulation; 

55 also defines the initial occupation vector. 

56 calculator 

57 Calculator to be used for calculating the potential changes 

58 that enter the evaluation of the Metropolis criterion. 

59 temperature 

60 Temperature :math:`T` in appropriate units, commonly Kelvin. 

61 boltzmann_constant 

62 Boltzmann constant :math:`k_B` in appropriate 

63 units, i.e., units that are consistent 

64 with the underlying cluster expansion 

65 and the temperature units. Default: eV/K. 

66 user_tag 

67 Human-readable tag for ensemble. Default: ``None``. 

68 random_seed 

69 Seed for the random number generator used in the Monte Carlo simulation. 

70 dc_filename 

71 Name of file the data container associated with the ensemble 

72 will be written to. If the file exists it will be read, the 

73 data container will be appended, and the file will be 

74 updated/overwritten. 

75 data_container_write_period 

76 Period in units of seconds at which the data container is 

77 written to file. Writing periodically to file provides both 

78 a way to examine the progress of the simulation and to back up 

79 the data. Default: 600 s. 

80 ensemble_data_write_interval 

81 Interval at which data is written to the data container. This 

82 includes for example the current value of the calculator 

83 (i.e., usually the energy) as well as ensembles specific fields 

84 such as temperature or the number of atoms of different species. 

85 Default: Number of sites in the :attr:`structure`. 

86 trajectory_write_interval 

87 Interval at which the current occupation vector of the atomic 

88 configuration is written to the data container. 

89 Default: Number of sites in the :attr:`structure`. 

90 sublattice_probabilities 

91 Probability for picking a sublattice when doing a random swap. 

92 This should be as long as the number of sublattices and should 

93 sum up to 1. 

94 

95 

96 Example 

97 ------- 

98 The following snippet illustrate how to carry out a simple Monte Carlo 

99 simulation in the canonical ensemble. Here, the parameters of the cluster 

100 expansion are set to emulate a simple Ising model in order to obtain an 

101 example that can be run without modification. In practice, one should of 

102 course use a proper cluster expansion:: 

103 

104 >>> from ase.build import bulk 

105 >>> from icet import ClusterExpansion, ClusterSpace 

106 >>> from mchammer.calculators import ClusterExpansionCalculator 

107 

108 >>> # prepare cluster expansion 

109 >>> # the setup emulates a second nearest-neighbor (NN) Ising model 

110 >>> # (zerolet and singlet ECIs are zero; only first and second neighbor 

111 >>> # pairs are included) 

112 >>> prim = bulk('Au') 

113 >>> cs = ClusterSpace(prim, cutoffs=[4.3], chemical_symbols=['Ag', 'Au']) 

114 >>> ce = ClusterExpansion(cs, [0, 0, 0.1, -0.02]) 

115 

116 >>> # prepare initial configuration 

117 >>> structure = prim.repeat(3) 

118 >>> for k in range(5): 

119 >>> structure[k].symbol = 'Ag' 

120 

121 >>> # set up and run MC simulation 

122 >>> calc = ClusterExpansionCalculator(structure, ce) 

123 >>> mc = CanonicalEnsemble(structure=structure, calculator=calc, 

124 ... temperature=600, 

125 ... dc_filename='myrun_canonical.dc') 

126 >>> mc.run(100) # carry out 100 trial swaps 

127 """ 

128 

129 def __init__(self, 

130 structure: Atoms, 

131 calculator: BaseCalculator, 

132 temperature: float, 

133 user_tag: str = None, 

134 boltzmann_constant: float = kB, 

135 random_seed: int = None, 

136 dc_filename: str = None, 

137 data_container: str = None, 

138 data_container_write_period: float = 600, 

139 ensemble_data_write_interval: int = None, 

140 trajectory_write_interval: int = None, 

141 sublattice_probabilities: List[float] = None) -> None: 

142 

143 self._ensemble_parameters = dict(temperature=temperature) 

144 

145 # add species count to ensemble parameters 

146 symbols = set([symbol for sub in calculator.sublattices 

147 for symbol in sub.chemical_symbols]) 

148 for symbol in symbols: 

149 key = 'n_atoms_{}'.format(symbol) 

150 count = structure.get_chemical_symbols().count(symbol) 

151 self._ensemble_parameters[key] = count 

152 

153 super().__init__( 

154 structure=structure, 

155 calculator=calculator, 

156 user_tag=user_tag, 

157 random_seed=random_seed, 

158 data_container=data_container, 

159 dc_filename=dc_filename, 

160 data_container_class=DataContainer, 

161 data_container_write_period=data_container_write_period, 

162 ensemble_data_write_interval=ensemble_data_write_interval, 

163 trajectory_write_interval=trajectory_write_interval, 

164 boltzmann_constant=boltzmann_constant) 

165 

166 if sublattice_probabilities is None: 166 ↛ 169line 166 didn't jump to line 169, because the condition on line 166 was never false

167 self._swap_sublattice_probabilities = self._get_swap_sublattice_probabilities() 

168 else: 

169 self._swap_sublattice_probabilities = sublattice_probabilities 

170 

171 @property 

172 def temperature(self) -> float: 

173 """ Current temperature. """ 

174 return self._ensemble_parameters['temperature'] 

175 

176 def _do_trial_step(self): 

177 """ Carries out one Monte Carlo trial step. """ 

178 sublattice_index = self.get_random_sublattice_index(self._swap_sublattice_probabilities) 

179 return self.do_canonical_swap(sublattice_index=sublattice_index)