Coverage for mchammer/ensembles/semi_grand_canonical_ensemble.py: 96%

38 statements  

« prev     ^ index     » next       coverage.py v7.5.0, created at 2024-12-26 04:12 +0000

1""" 

2Definition of the semi-grand canonical ensemble class. 

3""" 

4 

5from ase import Atoms 

6from ase.data import atomic_numbers, chemical_symbols 

7from ase.units import kB 

8from collections import OrderedDict 

9from typing import Dict, Union, List 

10 

11from .. import DataContainer 

12from ..calculators.base_calculator import BaseCalculator 

13from .thermodynamic_base_ensemble import ThermodynamicBaseEnsemble 

14 

15 

16class SemiGrandCanonicalEnsemble(ThermodynamicBaseEnsemble): 

17 r"""Instances of this class allow one to simulate systems in the 

18 semi-grand canonical (SGC) ensemble (:math:`N\Delta\mu_i VT`), i.e. at 

19 constant temperature (:math:`T`), total number of sites (:math:`N=\sum_i 

20 N_i`), relative chemical potentials (:math:`\Delta\mu_i=\mu_i - \mu_1`, 

21 where :math:`i` denotes the species), and volume (:math:`V`). 

22 

23 The probability for a particular state in the SGC ensemble for a 

24 :math:`m`-component system can be written 

25 

26 .. math:: 

27 

28 \rho_{\text{SGC}} \propto \exp\Big[ - \big( E 

29 + \sum_{i>1}^m \Delta\mu_i N_i \big) \big / k_B T \Big] 

30 

31 with the *relative* chemical potentials :math:`\Delta\mu_i = \mu_i - 

32 \mu_1` and species counts :math:`N_i`. Unlike the :ref:`canonical ensemble 

33 <canonical_ensemble>`, the number of the respective species (or 

34 equivalently the concentrations) are allowed to vary in the SGC ensemble. 

35 A trial step thus consists of randomly picking an atom and changing its 

36 identity with probability 

37 

38 .. math:: 

39 

40 P = \min \Big\{ 1, \, \exp \big[ - \big( \Delta E 

41 + \sum_i \Delta \mu_i \Delta N_i \big) \big / k_B T \big] 

42 \Big\}, 

43 

44 where :math:`\Delta E` is the change in potential energy caused by the 

45 swap. 

46 

47 There exists a simple relation between the differences in chemical 

48 potential and the canonical free energy :math:`F`. In a binary system this 

49 relationship reads 

50 

51 .. math:: \Delta \mu = - \frac{1}{N} \frac{\partial F}{\partial c} ( 

52 N, V, T, \langle c \rangle). 

53 

54 Here :math:`c` denotes concentration (:math:`c=N_i/N`) and :math:`\langle 

55 c \rangle` the average concentration observed in the simulation. By 

56 recording :math:`\langle c \rangle` while gradually changing 

57 :math:`\Delta \mu`, one can thus in principle calculate the difference in 

58 canonical free energy between the pure phases (:math:`c=0` or :math:`1`) 

59 and any concentration by integrating :math:`\Delta \mu` over that 

60 concentration range. In practice this requires that the recorded average 

61 concentration :math:`\langle c \rangle` varies continuously with 

62 :math:`\Delta \mu`. This is not the case for materials with multiphase 

63 regions (such as miscibility gaps), because in such regions :math:`\Delta 

64 \mu` maps to multiple concentrations. In a Monte Carlo simulation, this is 

65 typically manifested by discontinuous jumps in concentration. Such jumps 

66 mark the phase boundaries of a multiphase region and can thus be used to 

67 construct the phase diagram. To recover the free energy, however, such 

68 systems require sampling in other ensembles, such as the 

69 :ref:`variance-constrained semi-grand canonical ensemble <vcsgc_ensemble>`. 

70 

71 Parameters 

72 ---------- 

73 structure 

74 Atomic configuration to be used in the Monte Carlo simulation; 

75 also defines the initial occupation vector. 

76 calculator 

77 Calculator to be used for calculating the potential changes 

78 that enter the evaluation of the Metropolis criterion. 

79 temperature 

80 Temperature :math:`T` in appropriate units, commonly Kelvin. 

81 chemical_potentials 

82 Chemical potential for each species :math:`\mu_i`. The key 

83 denotes the species, the value specifies the chemical potential in 

84 units that are consistent with the underlying cluster expansion. 

85 boltzmann_constant 

86 Boltzmann constant :math:`k_B` in appropriate units, i.e. units that are consistent 

87 with the underlying cluster expansion and the temperature units. Default: eV/K. 

88 user_tag 

89 Human-readable tag for ensemble. Default: ``None``. 

90 random_seed 

91 Seed for the random number generator used in the Monte Carlo simulation. 

92 dc_filename 

93 Name of file the data container associated with the ensemble 

94 will be written to. If the file exists it will be read, the 

95 data container will be appended, and the file will be 

96 updated/overwritten. 

97 data_container_write_period 

98 Period in units of seconds at which the data container is 

99 written to file. Writing periodically to file provides both 

100 a way to examine the progress of the simulation and to back up 

101 the data. Default: 600 s. 

102 ensemble_data_write_interval 

103 Interval at which data is written to the data container. This 

104 includes for example the current value of the calculator 

105 (i.e., usually the energy) as well as ensembles specific fields 

106 such as temperature or the number of atoms of different species. 

107 Default: Number of sites in the :attr:`structure`. 

108 trajectory_write_interval 

109 Interval at which the current occupation vector of the atomic 

110 configuration is written to the data container. 

111 Default: Number of sites in the :attr:`structure`. 

112 sublattice_probabilities 

113 Probability for picking a sublattice when doing a random flip. 

114 This should be as long as the number of sublattices and should 

115 sum up to 1. 

116 

117 Example 

118 ------- 

119 The following snippet illustrate how to carry out a simple Monte Carlo 

120 simulation in the semi-canonical ensemble. Here, the parameters of the 

121 cluster expansion are set to emulate a simple Ising model in order to 

122 obtain an example that can be run without modification. In practice, one 

123 should of course use a proper cluster expansion:: 

124 

125 >>> from ase.build import bulk 

126 >>> from icet import ClusterExpansion, ClusterSpace 

127 >>> from mchammer.calculators import ClusterExpansionCalculator 

128 

129 >>> # prepare cluster expansion 

130 >>> # the setup emulates a second nearest-neighbor (NN) Ising model 

131 >>> # (zerolet and singlet ECIs are zero; only first and second neighbor 

132 >>> # pairs are included) 

133 >>> prim = bulk('Au') 

134 >>> cs = ClusterSpace(prim, cutoffs=[4.3], chemical_symbols=['Ag', 'Au']) 

135 >>> ce = ClusterExpansion(cs, [0, 0, 0.1, -0.02]) 

136 

137 >>> # set up and run MC simulation (T=600 K, delta_mu=0.8 eV/atom) 

138 >>> structure = prim.repeat(3) 

139 >>> calc = ClusterExpansionCalculator(structure, ce) 

140 >>> mc = SemiGrandCanonicalEnsemble(structure=structure, calculator=calc, 

141 ... temperature=600, 

142 ... dc_filename='myrun_sgc.dc', 

143 ... chemical_potentials={'Ag': 0, 'Au': 0.8}) 

144 >>> mc.run(100) # carry out 100 trial swaps 

145 

146 """ 

147 

148 def __init__(self, 

149 structure: Atoms, 

150 calculator: BaseCalculator, 

151 temperature: float, 

152 chemical_potentials: Dict[str, float], 

153 boltzmann_constant: float = kB, 

154 user_tag: str = None, 

155 random_seed: int = None, 

156 dc_filename: str = None, 

157 data_container: str = None, 

158 data_container_write_period: float = 600, 

159 ensemble_data_write_interval: int = None, 

160 trajectory_write_interval: int = None, 

161 sublattice_probabilities: List[float] = None) -> None: 

162 

163 self._ensemble_parameters = dict(temperature=temperature) 

164 

165 # add chemical potentials to ensemble parameters 

166 # TODO: add check that chemical symbols in chemical potentials are allowed 

167 self._chemical_potentials = get_chemical_potentials(chemical_potentials) 

168 for atnum, chempot in self.chemical_potentials.items(): 

169 mu_sym = 'mu_{}'.format(chemical_symbols[atnum]) 

170 self._ensemble_parameters[mu_sym] = chempot 

171 

172 self._boltzmann_constant = boltzmann_constant 

173 

174 super().__init__( 

175 structure=structure, calculator=calculator, user_tag=user_tag, 

176 random_seed=random_seed, 

177 dc_filename=dc_filename, 

178 data_container=data_container, 

179 data_container_class=DataContainer, 

180 data_container_write_period=data_container_write_period, 

181 ensemble_data_write_interval=ensemble_data_write_interval, 

182 trajectory_write_interval=trajectory_write_interval, 

183 boltzmann_constant=boltzmann_constant) 

184 

185 if sublattice_probabilities is None: 185 ↛ 188line 185 didn't jump to line 188, because the condition on line 185 was never false

186 self._flip_sublattice_probabilities = self._get_flip_sublattice_probabilities() 

187 else: 

188 self._flip_sublattice_probabilities = sublattice_probabilities 

189 

190 @property 

191 def temperature(self) -> float: 

192 """ Temperature :math:`T` (see parameters section above). """ 

193 return self.ensemble_parameters['temperature'] 

194 

195 def _do_trial_step(self): 

196 """ Carries out one Monte Carlo trial step. """ 

197 sublattice_index = self.get_random_sublattice_index( 

198 probability_distribution=self._flip_sublattice_probabilities) 

199 return self.do_sgc_flip(self.chemical_potentials, sublattice_index=sublattice_index) 

200 

201 @property 

202 def chemical_potentials(self) -> Dict[int, float]: 

203 r""" 

204 Chemical potentials :math:`\mu_i` (see parameters section above). 

205 """ 

206 return self._chemical_potentials 

207 

208 def _get_ensemble_data(self) -> Dict: 

209 """Returns the data associated with the ensemble. For the SGC 

210 ensemble this specifically includes the species counts. 

211 """ 

212 # generic data 

213 data = super()._get_ensemble_data() 

214 

215 # species counts 

216 data.update(self._get_species_counts()) 

217 

218 return data 

219 

220 

221def get_chemical_potentials(chemical_potentials: Union[Dict[str, float], Dict[int, float]]) \ 

222 -> Dict[int, float]: 

223 """ Gets values of chemical potentials. """ 

224 if not isinstance(chemical_potentials, dict): 

225 raise TypeError('chemical_potentials has the wrong type: {}' 

226 .format(type(chemical_potentials))) 

227 

228 cps = OrderedDict([(key, val) if isinstance(key, int) 

229 else (atomic_numbers[key], val) 

230 for key, val in chemical_potentials.items()]) 

231 

232 return cps