Coverage for mchammer/ensembles/wang_landau_ensemble.py: 93%

244 statements  

« prev     ^ index     » next       coverage.py v7.5.0, created at 2024-12-26 04:12 +0000

1"""Definition of the Wang-Landau algorithm class.""" 

2 

3import random 

4 

5from collections import OrderedDict 

6from typing import Dict, List, Optional, Tuple, Union 

7 

8import numpy as np 

9 

10from ase import Atoms 

11 

12from .. import WangLandauDataContainer 

13from ..calculators.base_calculator import BaseCalculator 

14from .thermodynamic_base_ensemble import BaseEnsemble 

15from icet.input_output.logging_tools import logger 

16 

17logger = logger.getChild('wang_landau_ensemble') 

18 

19 

20class WangLandauEnsemble(BaseEnsemble): 

21 r"""Instances of this class allow one to sample a system using the 

22 Wang-Landau (WL) algorithm, see Phys. Rev. Lett. **86**, 2050 

23 (2001) [WanLan01a]_. The WL algorithm enables one to acquire the 

24 density of states (DOS) as a function of energy, from which one 

25 can readily calculate many thermodynamic observables as a function 

26 of temperature. To this end, the WL algorithm accumulates both the 

27 microcanonical entropy :math:`S(E)` and a histogram :math:`H(E)` 

28 on an energy grid with a predefined spacing (:attr:`energy_spacing`). 

29 

30 The algorithm is initialized as follows. 

31 

32 #. Generate an initial configuration. 

33 #. Initialize counters for the microcanonical entropy 

34 :math:`S(E)` and the histogram :math:`H(E)` to zero. 

35 #. Set the fill factor :math:`f=1`. 

36 

37 It then proceeds as follows. 

38 

39 #. Propose a new configuration (see :attr:`trial_move`). 

40 #. Accept or reject the new configuration with probability 

41 

42 .. math:: 

43 

44 P = \min \{ 1, \, \exp [ S(E_\mathrm{new}) - S(E_\mathrm{cur}) ] \}, 

45 

46 where :math:`E_\mathrm{cur}` and :math:`E_\mathrm{new}` are the 

47 energies of the current and new configurations, respectively. 

48 #. Update the microcanonical entropy :math:`S(E)\leftarrow S(E) + f` 

49 and histogram :math:`H(E) \leftarrow H(E) + 1` where 

50 :math:`E` is the energy of the system at the end of the move. 

51 #. Check the flatness of the histogram :math:`H(E)`. If 

52 :math:`H(E) > \chi \langle H(E)\rangle\,\forall E` reset the histogram 

53 :math:`H(E) = 0` and reduce the fill factor :math:`f \leftarrow f / 2`. 

54 The parameter :math:`\chi` is set via :attr:`flatness_limit`. 

55 #. If :math:`f` is smaller than :attr:`fill_factor_limit` terminate 

56 the loop, otherwise return to 1. 

57 

58 The microcanonical entropy :math:`S(E)` and the histogram along 

59 with related information are written to the data container every 

60 time :math:`f` is updated. Using the density :math:`\rho(E) = \exp S(E)` 

61 one can then readily compute various thermodynamic quantities, 

62 including, e.g., the average energy: 

63 

64 .. math:: 

65 

66 \left<E\right> = \frac{\sum_E E \rho(E) \exp(-E / k_B T)}{ 

67 \sum_E \rho(E) \exp(-E / k_B T)} 

68 

69 Parameters 

70 ---------- 

71 structure 

72 Atomic configuration to be used in the Wang-Landau simulation; 

73 also defines the initial occupation vector. 

74 calculator 

75 Calculator to be used for calculating potential changes. 

76 trial_move 

77 One can choose between two different trial moves for 

78 generating new configurations. In a ``'swap'`` move two sites are 

79 selected and their occupations are swapped. In a ``'flip'`` move 

80 one site is selected and its occupation is flipped to a 

81 different species. While ``'swap'`` moves conserve the 

82 concentrations of the species in the system, ``'flip'`` moves 

83 allow one in principle to sample the full composition space. 

84 energy_spacing 

85 Sets the bin size of the energy grid on which the microcanonical 

86 entropy :math:`S(E)`, and thus the density :math:`\exp S(E)`, is 

87 evaluated. The spacing should be small enough to capture the features 

88 of the density of states. Too small values will, however, render the 

89 convergence very tedious if not impossible. 

90 energy_limit_left 

91 Sets the lower limit of the energy range within which the 

92 microcanonical entropy :math:`S(E)` will be sampled. By default 

93 (``None``) no limit is imposed. Setting limits can be useful if only a 

94 part of the density of states is required. 

95 energy_limit_right 

96 Sets the upper limit of the energy range within which the 

97 microcanonical entropy :math:`S(E)` will be sampled. By default 

98 (``None``) no limit is imposed. Setting limits can be useful if only a 

99 part of the density of states is required. 

100 fill_factor_limit 

101 If the fill_factor :math:`f` falls below this value, the 

102 WL sampling loop is terminated. 

103 flatness_check_interval 

104 For computational efficiency the flatness condition is only 

105 evaluated every :attr:`flatness_check_interval`-th trial step. By 

106 default (``None``) :attr:`flatness_check_interval` is set to 1000 

107 times the number of sites in :attr:`structure`, i.e., 1000 Monte 

108 Carlo sweeps. 

109 flatness_limit 

110 The histogram :math:`H(E)` is deemed sufficiently flat if 

111 :math:`H(E) > \chi \left<H(E)\right>\,\forall 

112 E`. :attr:`flatness_limit` sets the parameter :math:`\chi`. 

113 window_search_penalty 

114 If :attr:`energy_limit_left` and/or :attr:`energy_limit_right` have been 

115 set, a modified acceptance probability, 

116 :math:`P=\min\{1,\,\exp[C_\mathrm{WSP}(d_\mathrm{new}- 

117 d_\mathrm{cur})]\}`, will be used until a configuration is 

118 found within the interval of interest. This parameter, 

119 specifically, corresponds to :math:`C_\mathrm{WSP}`, which 

120 controls how strongly moves that lead to an increase in the 

121 distance, i.e. difference in energy divided by the energy 

122 spacing, to the energy window (:math:`d_\mathrm{new}> 

123 d_\mathrm{cur}`) should be penalized. A higher value leads 

124 to a lower acceptance probability for such moves. 

125 user_tag 

126 Human-readable tag for ensemble. Default: ``None``. 

127 dc_filename 

128 Name of file the data container associated with the ensemble 

129 will be written to. If the file exists it will be read, the 

130 data container will be appended, and the file will be 

131 updated/overwritten. 

132 random_seed 

133 Seed for the random number generator used in the Monte Carlo 

134 simulation. 

135 ensemble_data_write_interval 

136 Interval at which data is written to the data container. This 

137 includes for example the current value of the calculator 

138 (i.e., usually the energy) as well as ensemble specific fields 

139 such as temperature or the number of atoms of different species. 

140 Default: Number of sites in the :attr:`structure`. 

141 data_container_write_period 

142 Period in units of seconds at which the data container is 

143 written to file. Writing periodically to file provides both 

144 a way to examine the progress of the simulation and to back up 

145 the data. Default: 600 s. 

146 trajectory_write_interval 

147 Interval at which the current occupation vector of the atomic 

148 configuration is written to the data container. 

149 Default: Number of sites in the :attr:`structure`. 

150 sublattice_probabilities 

151 Probability for picking a sublattice when doing a random swap. 

152 The list must contain as many elements as there are sublattices 

153 and it needs to sum up to 1. 

154 

155 Example 

156 ------- 

157 The following snippet illustrates how to carry out a Wang-Landau 

158 simulation. For the purpose of demonstration, the parameters of 

159 the cluster expansion are set to obtain a two-dimensional square 

160 Ising model, one of the systems studied in the original work by 

161 Wang and Landau:: 

162 

163 >>> from ase import Atoms 

164 >>> from icet import ClusterExpansion, ClusterSpace 

165 >>> from mchammer.calculators import ClusterExpansionCalculator 

166 >>> from mchammer.ensembles import WangLandauEnsemble 

167 

168 >>> # prepare cluster expansion 

169 >>> prim = Atoms('Au', positions=[[0, 0, 0]], cell=[1, 1, 10], pbc=True) 

170 >>> cs = ClusterSpace(prim, cutoffs=[1.1], chemical_symbols=['Ag', 'Au']) 

171 >>> ce = ClusterExpansion(cs, [0, 0, 2]) 

172 

173 >>> # prepare initial configuration 

174 >>> structure = prim.repeat((4, 4, 1)) 

175 >>> for k in range(8): 

176 ... structure[k].symbol = 'Ag' 

177 

178 >>> # set up and run Wang-Landau simulation 

179 >>> calculator = ClusterExpansionCalculator(structure, ce) 

180 >>> mc = WangLandauEnsemble(structure=structure, 

181 ... calculator=calculator, 

182 ... energy_spacing=1, 

183 ... dc_filename='ising_2d_run.dc') 

184 >>> mc.run(number_of_trial_steps=len(structure)*100) 

185 >>> # Note: in practice one requires many more steps 

186 

187 """ 

188 

189 def __init__(self, 

190 structure: Atoms, 

191 calculator: BaseCalculator, 

192 energy_spacing: float, 

193 energy_limit_left: float = None, 

194 energy_limit_right: float = None, 

195 trial_move: str = 'swap', 

196 fill_factor_limit: float = 1e-6, 

197 flatness_check_interval: int = None, 

198 flatness_limit: float = 0.8, 

199 window_search_penalty: float = 2.0, 

200 user_tag: str = None, 

201 dc_filename: str = None, 

202 data_container: str = None, 

203 random_seed: int = None, 

204 data_container_write_period: float = 600, 

205 ensemble_data_write_interval: int = None, 

206 trajectory_write_interval: int = None, 

207 sublattice_probabilities: List[float] = None) -> None: 

208 

209 # set trial move 

210 if trial_move == 'swap': 

211 self.do_move = self._do_swap 

212 self._get_sublattice_probabilities = self._get_swap_sublattice_probabilities 

213 elif trial_move == 'flip': 

214 self.do_move = self._do_flip 

215 self._get_sublattice_probabilities = self._get_flip_sublattice_probabilities 

216 else: 

217 raise ValueError('Invalid value for trial_move: {}.' 

218 ' Must be either "swap" or "flip".'.format(trial_move)) 

219 

220 # set default values that are system dependent 

221 if flatness_check_interval is None: 

222 flatness_check_interval = len(structure) * 1000 

223 

224 # parameters pertaining to construction of entropy and histogram 

225 self._energy_spacing = energy_spacing 

226 self._fill_factor_limit = fill_factor_limit 

227 self._flatness_check_interval = flatness_check_interval 

228 self._flatness_limit = flatness_limit 

229 

230 # energy window 

231 self._window_search_penalty = window_search_penalty 

232 self._bin_left = self._get_bin_index(energy_limit_left) 

233 self._bin_right = self._get_bin_index(energy_limit_right) 

234 if self._bin_left is not None and \ 

235 self._bin_right is not None and self._bin_left >= self._bin_right: 

236 raise ValueError('Invalid energy window: left boundary ({}, {}) must be' 

237 ' smaller than right boundary ({}, {})' 

238 .format(energy_limit_left, self._bin_left, 

239 energy_limit_right, self._bin_right)) 

240 

241 # ensemble parameters 

242 self._ensemble_parameters = {} 

243 self._ensemble_parameters['energy_spacing'] = energy_spacing 

244 self._ensemble_parameters['trial_move'] = trial_move 

245 self._ensemble_parameters['energy_limit_left'] = energy_limit_left 

246 self._ensemble_parameters['energy_limit_right'] = energy_limit_right 

247 # The following parameters are _intentionally excluded_ from 

248 # the ensemble_parameters dict as it would prevent users from 

249 # changing their values between restarts. The latter is advantageous 

250 # as these runs can require restarts and possibly parameter adjustments 

251 # to achieve convergence. 

252 # * fill_factor_limit 

253 # * flatness_check_interval 

254 # * flatness_limit 

255 # * entropy_write_frequency 

256 # * window_search_penalty 

257 

258 # add species count to ensemble parameters 

259 symbols = set([symbol for sub in calculator.sublattices 

260 for symbol in sub.chemical_symbols]) 

261 for symbol in symbols: 

262 key = 'n_atoms_{}'.format(symbol) 

263 count = structure.get_chemical_symbols().count(symbol) 

264 self._ensemble_parameters[key] = count 

265 

266 # set the convergence, which may be updated in case of a restart 

267 self._converged: bool = None 

268 

269 # the constructor of the parent classes must be called *after* 

270 # the ensemble_parameters dict has been populated 

271 super().__init__( 

272 structure=structure, 

273 calculator=calculator, 

274 user_tag=user_tag, 

275 random_seed=random_seed, 

276 dc_filename=dc_filename, 

277 data_container=data_container, 

278 data_container_class=WangLandauDataContainer, 

279 data_container_write_period=data_container_write_period, 

280 ensemble_data_write_interval=ensemble_data_write_interval, 

281 trajectory_write_interval=trajectory_write_interval) 

282 

283 # handle probabilities for swaps on different sublattices 

284 if sublattice_probabilities is None: 

285 self._sublattice_probabilities = self._get_sublattice_probabilities() 

286 else: 

287 self._sublattice_probabilities = sublattice_probabilities 

288 

289 # initialize Wang-Landau algorithm; in the case of a restart 

290 # these quantities are read from the data container file; the 

291 # if-conditions prevent these values from being overwritten 

292 self._potential = self.calculator.calculate_total( 

293 occupations=self.configuration.occupations) 

294 self._reached_energy_window = self._inside_energy_window( 

295 self._get_bin_index(self._potential)) 

296 if not hasattr(self, '_fill_factor'): 

297 self._fill_factor = 1.0 

298 if not hasattr(self, '_fill_factor_history'): 

299 if self._reached_energy_window: 

300 self._fill_factor_history = {self.step: self._fill_factor} 

301 else: 

302 self._fill_factor_history = {} 

303 if not hasattr(self, '_entropy_history'): 

304 self._entropy_history = {} 

305 if not hasattr(self, '_histogram'): 

306 self._histogram: Dict[int, int] = {} 

307 if not hasattr(self, '_entropy'): 

308 self._entropy: Dict[int, float] = {} 

309 

310 @property 

311 def fill_factor(self) -> float: 

312 """ current value of fill factor """ 

313 return self._fill_factor 

314 

315 @property 

316 def fill_factor_history(self) -> Dict[int, float]: 

317 """evolution of the fill factor in the Wang-Landau algorithm (key=MC 

318 trial step, value=fill factor) 

319 """ 

320 return self._fill_factor_history 

321 

322 @property 

323 def converged(self) -> Optional[bool]: 

324 """ True if convergence has been achieved """ 

325 return self._converged 

326 

327 @property 

328 def flatness_limit(self) -> float: 

329 r"""The histogram :math:`H(E)` is deemed sufficiently flat if 

330 :math:`H(E) > \chi \left<H(E)\right>\,\forall 

331 E` where :attr:`flatness_limit` sets the parameter :math:`\chi`. 

332 """ 

333 return self._flatness_limit 

334 

335 @flatness_limit.setter 

336 def flatness_limit(self, new_value) -> None: 

337 self._flatness_limit = new_value 

338 self._converged = None 

339 

340 @property 

341 def fill_factor_limit(self) -> float: 

342 """ If the fill factor :math:`f` falls below this value, the 

343 Wang-Landau sampling is terminated. """ 

344 return self._fill_factor_limit 

345 

346 @fill_factor_limit.setter 

347 def fill_factor_limit(self, new_value) -> None: 

348 self._fill_factor_limit = new_value 

349 self._converged = None 

350 

351 @property 

352 def flatness_check_interval(self) -> int: 

353 """ Number of MC trial steps between checking the flatness condition. """ 

354 return self._flatness_check_interval 

355 

356 @flatness_check_interval.setter 

357 def flatness_check_interval(self, new_value: int) -> None: 

358 self._flatness_check_interval = new_value 

359 

360 def run(self, number_of_trial_steps: int): 

361 """ 

362 Samples the ensemble for the given number of trial steps. 

363 

364 Parameters 

365 ---------- 

366 number_of_trial_steps 

367 Maximum number of MC trial steps to run in total. The 

368 run will terminate earlier if :attr:`fill_factor_limit` is reached. 

369 reset_step 

370 If ``True`` the MC trial step counter and the data container will 

371 be reset to zero and empty, respectively. 

372 

373 Raises 

374 ------ 

375 TypeError 

376 If :attr:`number_of_trial_steps` is not an ``int``. 

377 """ 

378 if self.converged: 

379 logger.warning('Convergence has already been reached.') 

380 else: 

381 super().run(number_of_trial_steps) 

382 

383 def _terminate_sampling(self) -> bool: 

384 """Returns ``True`` if the Wang-Landau algorithm has converged. This is 

385 used in the :func:`run` method implemented in :class:`BaseEnsemble` to 

386 evaluate whether the sampling loop should be terminated. 

387 """ 

388 # N.B.: self._converged can be None 

389 if self._converged is not None: 

390 return self._converged 

391 else: 

392 return False 

393 

394 def _restart_ensemble(self): 

395 """Restarts ensemble using the last state saved in the data container 

396 file. Note that this method does _not_ use the :attr:`last_state` property of 

397 the data container but rather uses the last data written to the data frame. 

398 """ 

399 super()._restart_ensemble() 

400 self._fill_factor = self.data_container._last_state['fill_factor'] 

401 self._fill_factor_history = self.data_container._last_state['fill_factor_history'] 

402 self._entropy_history = self.data_container._last_state['entropy_history'] 

403 self._histogram = self.data_container._last_state['histogram'] 

404 self._entropy = self.data_container._last_state['entropy'] 

405 histogram = np.array(list(self._histogram.values())) 

406 limit = self._flatness_limit * np.average(histogram) 

407 self._converged = (self._fill_factor <= self._fill_factor_limit 

408 ) & np.all(histogram >= limit) 

409 

410 def write_data_container(self, outfile: Union[str, bytes]): 

411 """Updates the last state of the Wang-Landau simulation and 

412 writes the data container to file. 

413 

414 Parameters 

415 ---------- 

416 outfile 

417 File to which to write. 

418 """ 

419 self._data_container._update_last_state( 

420 last_step=self.step, 

421 occupations=self.configuration.occupations.tolist(), 

422 accepted_trials=self._accepted_trials, 

423 random_state=random.getstate(), 

424 fill_factor=self._fill_factor, 

425 fill_factor_history=self._fill_factor_history, 

426 entropy_history=self._entropy_history, 

427 histogram=OrderedDict(sorted(self._histogram.items())), 

428 entropy=OrderedDict(sorted(self._entropy.items()))) 

429 self.data_container.write(outfile) 

430 

431 def _acceptance_condition(self, potential_diff: float) -> bool: 

432 """Evaluates Metropolis acceptance criterion. 

433 

434 Parameters 

435 ---------- 

436 potential_diff 

437 Change in the thermodynamic potential associated 

438 with the trial step. 

439 """ 

440 

441 # acceptance/rejection step 

442 bin_old = self._get_bin_index(self._potential) 

443 bin_new = self._get_bin_index(self._potential + potential_diff) 

444 bin_cur = bin_old 

445 if self._allow_move(bin_cur, bin_new): 

446 S_cur = self._entropy.get(bin_cur, 0) 

447 S_new = self._entropy.get(bin_new, 0) 

448 delta = np.exp(S_cur - S_new) 

449 if delta >= 1 or delta >= self._next_random_number(): 

450 accept = True 

451 self._potential += potential_diff 

452 bin_cur = bin_new 

453 else: 

454 accept = False 

455 else: 

456 accept = False 

457 

458 if not self._reached_energy_window: 

459 # check whether the target energy window has been reached 

460 self._reached_energy_window = self._inside_energy_window(bin_cur) 

461 # if the target window has been reached remove unused bins 

462 # from histogram and entropy counters 

463 if self._reached_energy_window: 

464 self._fill_factor_history[self.step] = self._fill_factor 

465 # flush data from data container except for initial step 

466 self._data_container._data_list = [self._data_container._data_list[0]] 

467 self._entropy = {k: self._entropy[k] 

468 for k in self._entropy if self._inside_energy_window(k)} 

469 self._histogram = {k: self._histogram[k] 

470 for k in self._histogram if self._inside_energy_window(k)} 

471 else: 

472 # then reconsider accept/reject based on whether we 

473 # approached the window or not 

474 dist_new = np.inf 

475 dist_old = np.inf 

476 if self._bin_left is not None: 476 ↛ 479line 476 didn't jump to line 479, because the condition on line 476 was never false

477 dist_new = min(dist_new, abs(bin_new - self._bin_left)) 

478 dist_old = min(dist_old, abs(bin_old - self._bin_left)) 

479 if self._bin_right is not None: 

480 dist_new = min(dist_new, abs(bin_new - self._bin_right)) 

481 dist_old = min(dist_old, abs(bin_old - self._bin_right)) 

482 assert dist_new < np.inf and dist_old < np.inf 

483 exp_dist = np.exp((dist_old - dist_new) * self._window_search_penalty) 

484 if exp_dist >= 1 or exp_dist >= self._next_random_number(): 

485 # should be accepted 

486 if not accept: 

487 # reset potential 

488 self._potential += potential_diff 

489 bin_cur = bin_new 

490 accept = True 

491 else: 

492 # should be rejected 

493 if accept: 493 ↛ 496line 493 didn't jump to line 496, because the condition on line 493 was never false

494 # reset potential 

495 self._potential -= potential_diff 

496 bin_cur = bin_old 

497 accept = False 

498 

499 # update histograms and entropy counters 

500 self._update_entropy(bin_cur) 

501 

502 return accept 

503 

504 def _update_entropy(self, bin_cur: int) -> None: 

505 """Updates counters for histogram and entropy, checks histogram 

506 flatness, and updates fill factor if indicated. 

507 """ 

508 

509 # update histogram and entropy 

510 self._entropy[bin_cur] = self._entropy.get(bin_cur, 0) + self._fill_factor 

511 self._histogram[bin_cur] = self._histogram.get(bin_cur, 0) + 1 

512 

513 # check flatness of histogram 

514 if self.step % self._flatness_check_interval == 0 and \ 

515 self.step > 0 and self._reached_energy_window: 

516 

517 # shift entropy counter in order to avoid overflow 

518 entropy_ref = np.min(list(self._entropy.values())) 

519 for k in self._entropy: 

520 self._entropy[k] -= entropy_ref 

521 

522 # check whether the Wang-Landau algorithm has converged 

523 histogram = np.array(list(self._histogram.values())) 

524 limit = self._flatness_limit * np.average(histogram) 

525 is_flat = np.all(histogram >= limit) 

526 self._converged = (self._fill_factor <= self._fill_factor_limit) & is_flat 

527 if is_flat and not self._converged: 

528 # update fill factor 

529 self._fill_factor /= 2 

530 self._fill_factor_history[self.step] = self._fill_factor 

531 # update entropy history 

532 self._entropy_history[self.step] = OrderedDict( 

533 sorted(self._entropy.items())) 

534 # reset histogram 

535 self._histogram = dict.fromkeys(self._histogram, 0) 

536 

537 def _get_bin_index(self, energy: float) -> Optional[int]: 

538 """ Returns bin index for histogram and entropy dictionaries. """ 

539 if energy is None or np.isnan(energy): 

540 return None 

541 return int(round(energy / self._energy_spacing)) 

542 

543 def _allow_move(self, bin_cur: Optional[int], bin_new: int) -> bool: 

544 """Returns ``True`` if the current move is to be included in the 

545 accumulation of histogram and entropy. This logic has been 

546 moved into a separate function in order to enhance 

547 readability. 

548 """ 

549 if self._bin_left is None and self._bin_right is None: 

550 # no limits on energy window 

551 return True 

552 if self._bin_left is not None: 

553 if bin_cur < self._bin_left: 

554 # not yet in window (left limit) 

555 return True 

556 if bin_new < self._bin_left: 

557 # imposing left limit 

558 return False 

559 if self._bin_right is not None: 

560 if bin_cur > self._bin_right: 

561 # not yet in window (right limit) 

562 return True 

563 if bin_new > self._bin_right: 

564 # imposing right limit 

565 return False 

566 return True 

567 

568 def _inside_energy_window(self, bin_k: int) -> bool: 

569 """Returns ``True`` if :attr:`bin_k` is inside the energy window specified for 

570 this simulation. 

571 """ 

572 if self._bin_left is not None and bin_k < self._bin_left: 

573 return False 

574 if self._bin_right is not None and bin_k > self._bin_right: 

575 return False 

576 return True 

577 

578 def _do_trial_step(self): 

579 """ Carries out one Monte Carlo trial step. """ 

580 sublattice_index = self.get_random_sublattice_index(self._sublattice_probabilities) 

581 return self.do_move(sublattice_index=sublattice_index) 

582 

583 def _do_swap(self, sublattice_index: int, allowed_species: List[int] = None) -> int: 

584 """Carries out a Monte Carlo trial that involves swapping the species 

585 on two sites. This method has been copied from 

586 :class:`ThermodynamicBaseEnsemble`. 

587 

588 Parameters 

589 --------- 

590 sublattice_index 

591 Index of sublattice the swap will act on. 

592 allowed_species 

593 List of atomic numbers for allowed species. 

594 

595 Returns 

596 ------- 

597 Returns 1 or 0 depending on if trial move was accepted or rejected. 

598 """ 

599 sites, species = self.configuration.get_swapped_state(sublattice_index, allowed_species) 

600 potential_diff = self._get_property_change(sites, species) 

601 if self._acceptance_condition(potential_diff): 

602 self.update_occupations(sites, species) 

603 return 1 

604 return 0 

605 

606 def _do_flip(self, sublattice_index: int, allowed_species: List[int] = None) -> int: 

607 """Carries out one Monte Carlo trial step that involves flipping the 

608 species on one site. This method has been adapted from 

609 :class:`ThermodynamicBaseEnsemble`. 

610 

611 Parameters 

612 --------- 

613 sublattice_index 

614 Index of sublattice the flip will act on. 

615 allowed_species 

616 List of atomic numbers for allowed species. 

617 

618 Returns 

619 ------- 

620 Returns 1 or 0 depending on if trial move was accepted or rejected. 

621 """ 

622 index, species = self.configuration.get_flip_state(sublattice_index, allowed_species) 

623 potential_diff = self._get_property_change([index], [species]) 

624 if self._acceptance_condition(potential_diff): 

625 self.update_occupations([index], [species]) 

626 return 1 

627 return 0 

628 

629 def _get_swap_sublattice_probabilities(self) -> List[float]: 

630 """Returns sublattice probabilities suitable for swaps. This method 

631 has been copied without modification from :class:`ThermodynamicBaseEnsemble`. 

632 """ 

633 sublattice_probabilities = [] 

634 for i, sl in enumerate(self.sublattices): 

635 if self.configuration.is_swap_possible(i): 

636 sublattice_probabilities.append(len(sl.indices)) 

637 else: 

638 sublattice_probabilities.append(0) 

639 norm = sum(sublattice_probabilities) 

640 if norm == 0: 

641 raise ValueError('No swaps are possible on any of the active sublattices.') 

642 sublattice_probabilities = [p / norm for p in sublattice_probabilities] 

643 return sublattice_probabilities 

644 

645 def _get_flip_sublattice_probabilities(self) -> List[float]: 

646 """Returns the default sublattice probability which is based on the 

647 sizes of a sublattice. This method has been copied without 

648 modification from :class:`ThermodynamicBaseEnsemble`. 

649 """ 

650 sublattice_probabilities = [] 

651 for _, sl in enumerate(self.sublattices): 

652 if len(sl.chemical_symbols) > 1: 

653 sublattice_probabilities.append(len(sl.indices)) 

654 else: 

655 sublattice_probabilities.append(0) 

656 norm = sum(sublattice_probabilities) 

657 sublattice_probabilities = [p / norm for p in sublattice_probabilities] 

658 return sublattice_probabilities 

659 

660 

661def get_bins_for_parallel_simulations(n_bins: int, 

662 energy_spacing: float, 

663 minimum_energy: float, 

664 maximum_energy: float, 

665 overlap: int = 4, 

666 bin_size_exponent: float = 1.0) -> List[Tuple[float, float]]: 

667 """Generates a list of energy bins (lower and upper bound) suitable for 

668 parallel Wang-Landau simulations. For the latter, the energy range is 

669 split up into a several bins (:attr:`n_bins`). Each bin is then sampled in a 

670 separate Wang-Landau simulation. Once the density of states in the 

671 individual bins has been converged the total density of states can be 

672 constructed by patching the segments back together. To this end, one 

673 requires some over overlap between the segments (:attr:`overlap`). 

674 

675 The function returns a list of tuples. Each tuple provides the lower 

676 (:attr:`energy_limit_left`) and upper (:attr:`energy_limit_right`) bound of one 

677 bin, which are then to be used to set :attr:`energy_limit_left` and 

678 :attr:`energy_limit_right` when initializing a :class:`WangLandauEnsemble` 

679 instance. 

680 

681 Note 

682 ---- 

683 The left-most/right-most bin has no lower/upper bound (set to ``None``). 

684 

685 Parameters 

686 ---------- 

687 n_bins 

688 Number of bins. 

689 energy_spacing 

690 Sets the bin size of the energy grid used by the Wang-Landau 

691 simulation, see :class:`WangLandauEnsemble` for details. 

692 minimum_energy 

693 An estimate for the lowest energy to be encountered in this system. 

694 maximum_energy 

695 An estimate for the highest energy to be encountered in this system. 

696 overlap 

697 Amount of overlap between bins in units of :attr:`energy_spacing`. 

698 bin_size_exponent 

699 This parameter allows one to generate a non-uniform 

700 distribution of bin sizes. If :attr:`bin_size_exponent` is smaller 

701 than one bins at the lower and upper end of the energy range 

702 (specified via :attr:`minimum_energy` and :attr:`maximum_energy`) will 

703 be shrunk relative to the bins in the middle of the energy 

704 range. In principle this can be used one to achieve a more 

705 even distribution of computational load between the individual 

706 Wang-Landau simulations. 

707 

708 Note 

709 ---- 

710 This is an option for advanced users. Only use this keyword 

711 if you know what you are doing. 

712 """ 

713 

714 limits = np.linspace(-1, 1, n_bins + 1) 

715 limits = np.sign(limits) * np.abs(limits) ** bin_size_exponent 

716 limits *= 0.5 * (maximum_energy - minimum_energy) 

717 limits += 0.5 * (maximum_energy + minimum_energy) 

718 limits[0], limits[-1] = None, None 

719 

720 bounds = [] 

721 for k, (energy_limit_left, energy_limit_right) in enumerate(zip(limits[:-1], limits[1:])): 

722 if energy_limit_left is not None and energy_limit_right is not None and \ 

723 (energy_limit_right - energy_limit_left) / energy_spacing < 2 * overlap: 

724 raise ValueError('Energy window too small. min/max: {}/{}' 

725 .format(energy_limit_right, energy_limit_left) + 

726 ' Try decreasing n_bins ({}) and/or overlap ({}).' 

727 .format(n_bins, overlap)) 

728 if energy_limit_left is not None: 

729 energy_limit_left -= overlap * energy_spacing 

730 if energy_limit_right is not None: 

731 energy_limit_right += overlap * energy_spacing 

732 bounds.append((energy_limit_left, energy_limit_right)) 

733 

734 return bounds